1 (a) Define the term relative isotopic mass .	
	(2)
(b) Naturally occurring chlorine contains 75.53% of ³⁵ Cl and 24.47% of ³⁷ Cl.	
(i) Calculate the relative atomic mass of chlorine to four significant figures.	(2)
 (ii) Two of the peaks in the mass spectrum of chlorine, Cl₂, are at m/e 70 and 74. Identify the species giving rise to these peaks. 	(2)
(iii) What is the <i>m/e</i> value of the other peak that you would expect to see in this region of the mass spectrum and the identity of the species giving rise to it?	
Value Species	(2)
(Total for Question 8 mar)	

2 Sodium	burns in oxygen to give a pale yellow solid X .	
(a) (i)	1.73 g of sodium reacts with 1.20 g of oxygen.	
	Calculate the empirical formula of X .	(2)
(ii)	The molar mass of X is 78 g mol 1 . Give the molecular formula of X .	(1)
(iii)	Write the equation, including state symbols, for the reaction of sodium with oxygen to produce \mathbf{X} .	(2)
(iv)	Calculate the volume of oxygen in dm³ (at room temperature and pressure) which reacts with 1.73 g of sodium. (The molar volume of any gas at room temperature and pressure is 24 dm³ mol ¹.)	(2)
(v)	Calculate the number of oxygen molecules that react with 1.73 g of sodium. (The Avogadro constant 6.02×10^{23} mol 1 .)	(1)

so.	duct. Suggest why this	18
30.		(1)
(Tot	tal for Ouestion 9 ma	rks)

- **3** An organic compound **X** contains carbon, hydrogen, oxygen and nitrogen.
 - 0.132 g of **X** is burned completely in oxygen to produce 0.072 g of water, 0.176 g of carbon dioxide and 24.0 cm^3 of nitrogen.

[Molar volume of nitrogen under the conditions of the experiment 24000 cm³ mol ¹]

(a) Calculate the empirical formula of compound X.

(5)

(b) The molar mass of X is 132 g mol 1 . Deduce the molecular formula for X. Show how you arrived at your answer.

(1)

	(Total for Question 12 marks)
	(iii) Hence give the structural formula \mathbf{X} .	(1)
	(ii) Deduce the displayed formula Y and give its name.	(2)
	(i) Use all the information above to deduce the functional groups present in Y and to classify the type of compound it is. Justify your answer.	(3)
	When Y is sprayed with a solution of ninhydrin and heated, a purple colour is observed.	
	One mole of Y will react with either one mole of hydrochloric acid or one mole of sodium hydroxide solution.	
:)	When X is refluxed with concentrated hydrochloric acid for several hours, cooled and neutralized, there is only one organic product, Y , which has the molecular formula $C_2H_5O_2N$.	

4 0.400 g of magnesium ribbon reacted with exactly 22.2 cm ³ of hydrochloric concentration 1.50 mol dm ³ .	acid of
400 cm ³ of hydrogen gas was formed, the volume being measured at room and pressure.	ı temperature
In the calculations that follow, use the following molar masses:	
$ m Mg \ 24.0 \ g \ mol^{-1} \ Cl \ 35.5 \ g \ mol^{-1}$	
(a) Calculate the amount (in moles) of magnesium used.	(1)
(b) Calculate the amount (in moles) of hydrochloric acid used.	(1)
(c) Calculate the amount (in moles) of hydrogen produced. [Molar volume of any gas at room temperature and pressure 24 000 of the content of	$cm^3 mol^{-1}$] (1)
(d) Show that the calculated amounts of magnesium, hydrochloric acid and consistent with the following equation for the reaction $Mg + 2HCl \rightarrow MgCl_2 + H_2$	d hydrogen are

	the maximum mass of magnesium chloride that would be formed Give your answer to three significant figures.	in this	(3)
	(Total for Question	7 marks	s)